My main question is in 90% of cases these are installers. How are you actually verifying the software that you install? In some cases it is signed and verified but in many cases it is just coming down from the same HTTPS server with no additional verification. So are you then diffing the code (which may be compiled) as well?
I'm not saying that random running random installers from the internet is a great pattern. Something like installing from your distribution can have better verification mechanisms. But this seems to add very little confidence.
You're absolutely right—vet's scope is focused on securing the installer script itself, not the binary it downloads.
The goal is to prevent the installer from being maliciously modified to, for example, skip its own checksum verification or download a binary from a different, malicious URL.
It's one strong link in the chain, but you're right that it's not the whole chain.
This an amazing solution. I wondered about this often, looking at you `uv`, but in a lot of the cases I cave given that everyone else trust some code maintainers.
The two biggest hurdles for a security tool like this are LLM non-determinism and the major privacy risk of sending code to a third-party API.
This is exactly why vet relies on ShellCheck—it's deterministic, rules-based, and runs completely offline. It will always give the same, trustworthy output for the same input.
But your vision of smarter analysis is absolutely the right direction to be thinking. I'm excited for a future where fast, local AI models can make that a reality for vet. Great food for thought!
Hi HN, I'm the creator of `vet`. I've always been a bit nervous about the `curl | bash` pattern, even for trusted projects. It feels like there's a missing safety step. I wanted a tool that would show me a diff if a script changed, run it through `shellcheck`, and ask for my explicit OK before executing. That's why I built `vet`.
The install process itself uses this philosophy - I encourage you to check the installer script before running it!
I'm glad to see that I'm not the only person worried about this. It's a pretty glaring bit of attack surface if you ask me. I chuckled when I saw you used nvm as an example in your readme. I've pestered nvm about this sort of thing in the past (https://github.com/nvm-sh/nvm/issues/3349).
I'm a little uncertain about your threat model though. If you've got an SSL-tampering adversary that can serve you a malicious script when you expected the original, don't you think they'd also be sophisticated enough to instead cause the authentic script to subsequently download a malicious payload?
I know that nobody wants to deal with the headaches associated with keeping track of cryptographic hashes for everything you receive over a network (nix is, among other things, a tool for doing this). But I'm afraid it's the only way to actually solve this problem:
1. get remote inputs, check against hashes that were committed to source control
2. make a sandbox that doesn't have internet access
3. do the compute in that sandbox (to ensure it doesn't phone home for a payload which you haven't verified the hash of)
And this is why this exploit mechanism works so well.
Most installers are doing the same basic patterns: checking for dependencies, checking the distro, etc. It’s not hard to figure these out and spot them in different scripts.
My main question is in 90% of cases these are installers. How are you actually verifying the software that you install? In some cases it is signed and verified but in many cases it is just coming down from the same HTTPS server with no additional verification. So are you then diffing the code (which may be compiled) as well?
I'm not saying that random running random installers from the internet is a great pattern. Something like installing from your distribution can have better verification mechanisms. But this seems to add very little confidence.
The other thing is.. installer generally only runs once on a single machine, not sure how useful it is to “show the changes since last run”
You're absolutely right—vet's scope is focused on securing the installer script itself, not the binary it downloads.
The goal is to prevent the installer from being maliciously modified to, for example, skip its own checksum verification or download a binary from a different, malicious URL.
It's one strong link in the chain, but you're right that it's not the whole chain.
Can you show how it works on the page or readme as a video?
Does it open pager or editor? How does it show the shellcheck issues.
This is a great idea!
One extra feature could be passing the contents of the shell script to an LLM and asking it to surface any security concerns.
This an amazing solution. I wondered about this often, looking at you `uv`, but in a lot of the cases I cave given that everyone else trust some code maintainers.
What if someone peppers their malicious script with `# shellcheck disable=` pragmas?
Love the idea!
The two biggest hurdles for a security tool like this are LLM non-determinism and the major privacy risk of sending code to a third-party API.
This is exactly why vet relies on ShellCheck—it's deterministic, rules-based, and runs completely offline. It will always give the same, trustworthy output for the same input.
But your vision of smarter analysis is absolutely the right direction to be thinking. I'm excited for a future where fast, local AI models can make that a reality for vet. Great food for thought!
Hi HN, I'm the creator of `vet`. I've always been a bit nervous about the `curl | bash` pattern, even for trusted projects. It feels like there's a missing safety step. I wanted a tool that would show me a diff if a script changed, run it through `shellcheck`, and ask for my explicit OK before executing. That's why I built `vet`.
The install process itself uses this philosophy - I encourage you to check the installer script before running it!
I'd love to hear your feedback.
The repo is at https://github.com/vet-run/vet
I'm glad to see that I'm not the only person worried about this. It's a pretty glaring bit of attack surface if you ask me. I chuckled when I saw you used nvm as an example in your readme. I've pestered nvm about this sort of thing in the past (https://github.com/nvm-sh/nvm/issues/3349).
I'm a little uncertain about your threat model though. If you've got an SSL-tampering adversary that can serve you a malicious script when you expected the original, don't you think they'd also be sophisticated enough to instead cause the authentic script to subsequently download a malicious payload?
I know that nobody wants to deal with the headaches associated with keeping track of cryptographic hashes for everything you receive over a network (nix is, among other things, a tool for doing this). But I'm afraid it's the only way to actually solve this problem:
1. get remote inputs, check against hashes that were committed to source control
2. make a sandbox that doesn't have internet access
3. do the compute in that sandbox (to ensure it doesn't phone home for a payload which you haven't verified the hash of)
This looks great and all, but trying to read and digest a multi hundred line bash script seems unrealistic. Full send pipe into bash.
And this is why this exploit mechanism works so well.
Most installers are doing the same basic patterns: checking for dependencies, checking the distro, etc. It’s not hard to figure these out and spot them in different scripts.